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ASYHPTOT~~ TO INVARIANT TORI IN THE THEORY OF 
PERTURBED HAMILTONIAN SYSTEMS* 

S.V. BOLOTIN 

Poincare's theory /I/ of the formation of isolated periodic motions during the perturbation 
of resonant invariant tori of integrable Hamiltonian systems was generalized in /2f by the 
methods of KAN-theory to the case of conditionally-periodic motions. In this paper variational 
methods are used to prove the existence of motions doubly-asymptotic to the nascent invariant 
tori. The existence of such trajectories is important in the qualitative investigation of a 
perturbed system. For example, if the doubly-asymptotic trajectory is isolated, then the 
perturbed system is non-integrable /3/ and possesses stochastic behaviour. Arnol'd's /4/ dif- 
fusion for Hamiltonian systems with many degrees of freedom is based on the existence of 
motions doubly-asymptotic to invariant tori. 

Let the Hamiltonian function fi= H,+ eH,+O(Ea) of an autonomous Hamiltonian system with 
m degrees of freedom depends smoothly on the parameter e. We assume that the unperturbed 
system with Hamilton function H, has a smooth compact invariant m-dimensional Lagrangian 
manifold M (a manifold M is Lagrangian if the restriction to N of the phase space's canonical 
a-form is zero), entirely filled with n-dimensional invariant tori carrying conditionally- 
periodic motions with identical vector frequencies e=Rn. This means that a free action of 
the n-dimensional torus Tn= Rn/2nZn is specified on M: rp=Tn, zeM-f(q,x) EM, and for any 
z E M the curve t-f(ot,x) is a trajectory of the unperturbed Hamiltonian system. A principal 
example is the case /2/ when the unperturbed system is fully integrable, and M is its m-dimen- 
sional resonant torus, such that the corresponding frequency vector 12=Rm satisfies m--n 
resonance relations of the form <k, B) = 0, k E 7P. 

A neighbourhood of the Lagrangian manifold H in the phase space can be identified with 
a neighbourhood of the set (y= 0) in the cotangent bundle T*M= {(x,y):s~M,y E T,*M} with 
canonical I-form dsAdy. We extend the action of the torus T” on M to the Hamiltonian action 
of TR on T’M: 

‘P c Tn, (z, Y) E T*M - (f (9, 4, fr*-*!A (1) 

Let a, and 17, be the results of averaging the functions Ha and H1 with respect to the 
action (l), for example 

- 
Ho@, Yf =- &- s Hoff (tp, .z), I,*-%) @ (2) 

T” 

We make the following assumptions: 
11 the frequency vector o is non-resonant in the sense of KAM-theory: there exist c>o 

and N>n--i such that 

Ite,k)I>CllkIt-N (3) 

for all non-zero kezZn. 
2f the following convexity constraint is satisfied: the Hessian A f~)-~om,(f,O) is positive- 

definite for all ZEM. This condition can be weakened, for example, by changing it to the 
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isoenergetic convexity condition 

<A (z)E, 5) > c II 5 ii”, c > 0 

for all 5 such that tE,pav (z,O)) = 0, and all ZEM. 
The function V(Z)=R~(Z,O) on M is invariant with respect to the action of the torus Tn 

and reaches its maximum on some torus fp = ff h 4: ‘P = T’Y. 
3) we aSsume that this maximum is strict and non-degenerate, i.e. the rank v,, (x0) is 

equal to m--n. 
One can then show that for sufficiently small E>O the perturbed system has a smooth 

invariant torus r= fg(cp,d$y=P} in phase space, smoothly depending on I&, coinciding with 

To when e=O and filled with conditionally-periodic motions t-g(@t + 'PO> r'E;, with fre- 
quency vector o. Through I there pass two invariant m-dimensional Lagrangian manifolds A*, 

depending smoothly on I/&coinciding with M for e=O, and intersecting along r at a non-zero 
angle of order f/z and filled with trajectories of the perturbed system, asymptotic to I? as 
t- $_m respectively. 

For n=l, when the manifold M is filled with periodic trajectories of the unperturbed 
system, these assertions are due to Poincare /l/. In the general case they are a reformulation 
of some of the results in /2/. The proof is performed using the methods of /5/. The case 
when M is a resonant invariant torus of a completely integrable system was considered in /2/, 
and the version given here does not require a different proof. Instead of condition 2) the 
weaker condition of non-degeneracy was used. Assumption 2) is necessary to prove the following 
theorem. 

Theorem. For sufficiently small E>O there exists a trajectory of the perturbed system, 
doubly-asymptotic (homoclinic) to I as a-f- and contained in a neighbourhood of M with 
of order y'e. In particular, (A* n A-) \\ I‘ # 0. 

Generally speaking, this trajectory is doubly-asymptotic to various conditionally-periodic 
motions on the torus I' as t--r-&. In the same way it can be shown that for all XEM there 
exists a trajectory asymptotic to r, whose projection into M passes through x, i.e. nAf = M, 
where n: T*M+M is the projection. In certain cases one can give estimates of the number 
of doubly-asymptotic trajectories to f. For example, if M=Tm is a resonant torus, then 
their number is at least m-n. 

The proof of the theorem is based on the methods described in /6/. From Taylor's formula 

N = (P(Z), Y> + 'l&f@/?$ (2, 0) Y, Y> + EHZ (Z, 0) + 0 (8% + e /Y I i lyP)I (4) 

apart from a constant. 
The trajectories of the vector field U(Z) = H,,(s, 0) of the unperturbed system on M have 

the form t --e f (ot, r). Hence u (5) = fw (0, z) o and <V (5), y> = (0, I>, where I = c(O,z)Y is the 
momentum associated with the Hamiltonian action (1) of the torus Tn on T*M. (In classical 
terminology 1 is the action corresponding to the angular variable VET*). 

Because the frequency vector o is non-resonant (3), one can change the variables, 
representing a step of the classical method of averaging "over the fast variable cp E Tnr', 
reducing the Hamiltonian function (4) to the form /2/ 

E = <o, I> + 'i# (IYV (z, 0) Y, Y> + SHt (5, 0) + 0 (es -k 6 1 Y i-t- 1 y 1”) (5) 

Here a, is the function (2) and the transformed variables are denoted by unchanged 
letters. 

From condition (2) the positive-definite quadratic form UyJ~=tA(~)y,y~, y E T,*M defines 
a Riemannian metric on M. From (5), for sufficiently small c>O and 6>0 the function B 
is strongly convex with respect to y in the domain ((z, Y) : RYI$< 61: 

a II E /Ia 6 (a&, 5) G b 15 IP (6) 
for all f, where the constants O<a<b do not depend on e. We redefine the Hamiltonian 
function (5) inside the domain (\\Y~lp@ so that it smoothly depends on 8 and so that for all 
sufficiently small e>O and all SE T,*M it satisfies the inequality (6), (which is possible, 
with changed a and b), and is identical with a second-degree polynomial in y as llYll+m. It 
will be shown that for sufficiently small e>O the constructed Hamiltonian system has a 
trajectory doubly-asymptotic to r, entirely contained in the region 111 Y P G Gel. Here and 
below A, B and C are positive constants independent of F.. For e<6tC this proves the 
theorem. 

We perform the canonical transformation yi-~n = Yl&fi,Rw F= Elfi. The Hamilton's 
function then takes the form 

p= (U(Z). nP!-~~(%ll~lPi- V(+))$_O(e) (7) 

where the Riemannian metric j/ i and the function V are invariant under the action of the 
tOrUS T" on M. The representation of the perturbed Hamiltonian function in the form (7) is 
the basis of Delon's method in the resonant theory of perturbations /l/. 

Without loss of generality one can assume that FzO on the invariant torus IJ and that 
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the projection of r into M under the map x: PM-M coincides with the invariant torus r, of 
the unperturbed system. 

Indeed, suppose I7 is specified by the map T~T~-g(cp, J&J EM. 
I‘,: a&? (TX 6) ++ f (cp, %20) 

We extend the map xr- 
to a diffeomorphism b: M-M 

identity when 
which depends smoothly on l//E and is the 

E = 0, and perform a canonical transformation (5, n)++(h(~, fi), h*,-\). In the new 
variables we then have nl?= r+ 

Because the invariant manifolds A* are Lagrangian and are uniquely projected into M in 
a neighbourhood of the invariant torus l',, they can be specified by generating functions Sf, 
defined independently of E in a neighbourbood lJcM of the torus f,: 

A*I{(I, 1):2= U, n== S$, 

where the functions Sk== S$-+-$&S~+O(F.) depend smoothly on lfrk and satisfy the Hamilton- 
Jacobi equations 

Hence 

It follows from the non-resonance condition (3) on o that the functions S,f and S,f are 
invariant under the action of T" on M: 

S& (f ((4% 4) = S& (2); '/B I/ S$lP i- V 5s 0 (9) 

and in addition A,*= {(z,n):z~ U, q= So@ are invariant manifolds containing the invariant torus 
To of the Hamiltonian system with Hamiltonian function "/e II 11 IP + v. This Hamiltonian system 
is reversible, so AC+ turns into at*- under the reflection n--n and s,- z -S + (I We put 
S = "/$ (S+, i_ S-). Then S = I/b, + 0 (E), where the function S, is invariant under the action of 
T" on N. We will extend S to a function of the form (9) defined on all of I, depending 
smoothly on y'& with S, invariant with respect to TV. 

Lemma 1. For sufficiently small &>O the function s++F(x,SI,fi) on M reaches a strict 
non-degenerate maximum equal to zero at .ZE To. 

Proof. Using Eq.(8) and the convexity of F with respect to 9, 

p (=, S,, V-4 = F (5, '6 NV+ + Sk-), V%< 

'is (P&z, S,*, 6) + F (r, S,-, vi)) = 0 

for ZEU. 
Equality is achieved only if S,+== S,-, when ZEIY~. Because A+ and A- intersect along 

I' at a non-zero angle, the maximum on I', is non-degenerate 
. From the conditions, the function V has a strict maximum equal to zero on the torus ro. 

Hence V(z)>c>O for roM\U. For z~M\li we have from (9) 

for sufficiently small E>O. The lemma is proved. 
We perform a canonical transformation (z,n)++f+,p) where p= 'I- S,. Because Cl>, ‘s,& = 0, 

in the new variables the Hamiltonian function F preserves its form (7) but the 
M= {p= 0) and coincides wfth I‘". 

invariant torus 
r of the perturbed system is contained in Furthermore, 
from Lemma 1 the function FI,=, achieves a strict non-degenerate maximum equal to zero on 
TO. 

We change to the Lagrangian form of the equations of motion, performing a Legendre trans- 
formation 

(5, p)w (z, z') E TM: x‘ = PP 

L (z, x', fi) = maXp ((p, z’> -- P (5, p, E/i)) 

By virtue of (6) the function F is convex with respect to the momentum p, and so the 
transformation (10) is well-defined and the function L is convex with respect to the velocity 
2': 
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for all k= T&, where \\I /p = ~5, A-I+))E,. Explicitly, 

(Q4 

By virtue of (10) min,. L (z,z.,-r/z) = --P (x,0, fi), so that the function L on TM reaches a 
strict non-degenerate minimum equal to zero on the invariant torus PO, i.e., with x E r. 

and Z‘ = u (5). 
The subsequent part of the proof of the theorem is performed using the methods of global 

variational calculus and follows /6/. Let Q be the set of complete&y continuous curves 7 
lo, 21 -M, such that 

and y @I), y(z) ET*. (The length z(u)>0 of the segment [O,T) depends on the curve y). For a 

given h>O we define Hamilton's action functional Sb on Q by the formula 

If y is a critical point of the functional (13) then Y (8 is a solution of Lagrange's 
equations, and from the formula for the variation of the action functional 

(using Fp(x, 0, fi) = v(z) fm TJ0 for zez P,). Consequently, 

li P (0) II” d 2% il P b-1 ua G wa 

From (6) and (14) we obtain 

It follows from (15) that the departure time for the trajectory y(t) 
hood U of the invariant torus P', is 

t_ = inf {tea [O, al : y (t) tz: U) >, CIJZ 

Similarly, the arrival time into U is 

t+ = sup ft E: [O, rl : y (t) 4 U) Q z - c/c/z 

where C>O is independent of .a and h. 

(14) 

from the neighbour- 

Lenarm 2. There exists C>O such that for all sufficiently small E>O and h>O the 
functional sh has a critical point yezQ such that y([O,+I)ct U and Sk(y)dC. 

We will confine ourselves to an outline of the proof, because it is close to an assertion 
proved in /6/- We define on R the structure of a Rilbert manifold 171. Because of the 
quadratic behaviour of the function L with respect to 5' as IX-~-- one can conclude ,I71 
that Sh is a function of class @+Lip on Q. Let Q(U) be the set of curves from 61 com- 
pletely contained in U. The functional Sk on D does not satisfy "condition C” of Pafais- 
Smale /7/, and so Morse's theory is not directly applicable. From the positivity of L on the 
domain M\ lVs ana inequality (11) one can conclude that G(v)--I-+M for YEP\P(U) and 
r fv) - 0 or 7(y)-r+w. From this it follows /6/ that for any c>O the functional &, 
satisfies an analogue of “COnditiOn c” on the COI@ete SUbSet 52” \ D (i.0, where Qc = (y E 8: & &) Q 
ct. Prom this and from the non-degeneracy of the minimum of the function L on r, one can con- 
clude that if the functional (13) has no critical points on the set Qe\Q(C), then there exists 
a one-parameter semigroup of action-reducing continuous transformations of the set blc, con- 
tracting P@ to G(U). (The proof is based on the method of gradient descent, see /6/l. 
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Thus to prove 
dimensional sphere 

the lemma it is sufficient to construct a continuous map q:Sk-Q of a k- 
into Q, not contractible to Q(U) and such that 

max S,,< c 
*(Sk) 

where C>O does not depend on e and h. 
Let n:M-A’ be the projection onto the compact quotient manifold N= M/V. Then for 

some k>O there exists a smooth map Sk+1 _ N taking a pole of the sphere Sk+l into the 
point A (f,) and not contractible to s(C) /a/. For every point on the equatorial sphere 
Skc Sk+1 the meridian passing through it defines a closed curve in N. We lift this curve to a 
horizontal curve in M with endpoints in To. (A curve in # is horizontal /8/ if at every point 
its velocity vector is orthogonal to the fibres of the bundle n:M+N in the metric 1) Il.) 
We obtain a map qO: Sk-Q that is not contractible to Q(U). One can assume that q,(G) does 
not contain single-point curves and reparameterize each curve Y~EI#~(S~) so that 11 yo’ (t) /I2 E e. 
Because Sk is compact the lengths of the curves from &,(Sk) are bounded: 

(18) 

We associate the curve y0 =*a (SK) with the curve t-y W = f(Ny, (t)) from R. The result- 
ing map +: Sk-B is not contractible to Q(U). For y E* (Sk) we have, by virtue of (12) and 
(la), 

B 1/s < AB = c (y = y(t), “$0 = ye(t)) 

The lemma is proved. 
Let h-.+O,and 1etyhEQbe the family of trajectories constructed in Lemma 2. Because 

Yh c uv by virtue of (16) and (17) one can assume that ~h:[a,b]- M for a<O< b and Yh(O)d u, 

and (I (h) + --m and b(h) -+ w for h-+0. Because the equality FEhfi is satisfied on 
the trajectory Yh and the function L' is convex with respect to velocity, the norm 11 -8h’ co) /I 

is uniformly bounded and, consequently, one can find a sequence hi-* +0 such that there exist 
limY** (0) = 20 & U and lim vii (0) = d as i-co. Let t-s(t) be the solution of Lagrange's 
equations with initial conditions 5 (0) = zo and z' (0) = 00. Then the trajectory 2 0) is 
infinitely extendible and 

(l!J) 

exists. 
Because L>O and L= 0 only when z~r0 and z' = v (z), the trajectory t + z (4 is 

doubly-asymptotic to Ta for t-+m. 
In order to conclude the proof of the theorem it remains to show that for sufficiently 

small e>O the phase space trajectory t + (I (t), P (t)) corresponding to z (t) is contained in a 

domain {II P )I <A), where A >0 does not depend on e. From the form of the Lagrangian func- 
tion (12) it follows that IIz’(t)- v(~(t))lj~< BE for L(z(t),~‘(t),I/ij<I/i, and, consequently, 

II P (t) II2 = II 5’ CL) - u (2 W) II2 i e + 0 (I/e) < B + 0 m w 

From (19), the time during which the inequality L(z(t), s’(t), r/i) <I/e is not satisfied is 
no greater than C/l/e. From 17) it follows that 

II P @) II. = P/e II P IP, FJ i II P II = (r/i (AP, 1/x) + ill P Ila, 0 (E))) / II P II d 
I/e II v, II + 0 (9 

From this, using (20) we obtain 

II P (t) II < 0 + C max /I V, II t- 0 (r/3 d A 

for Pm<t<m, which is what required. The theorem is proved. 
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CONTROL OF THE SPEED OF RESPONSE OF PREDATOR-PREY SYSTEMS* 

V.B. KO~ANOVSKII and A.K. SPIVAK 

The problem of optimal of a predator-prey system is investigated. The 
existence of admissible control is established and the structure of 
optimal control is investigated. 

Problems of optimal control of biological communities have been studied in many papers; 
bibliographies are contained in /I, 2/. 

1. Statement of the pmbtem. The dynamics of the interaction of predators and prey are 
described by the equation 12.1 

%' W = i% - WI) =I, R' CT) = &.% - a*) Y, 0.9) 

where Xl (7) is the population density of the prey and 111 W that of the predators at time 
T, and a, are positive numbers characterizing the interspecific interactions. 

In practice, to influence the system purposefully, one uses various chemical preparations 
such as pesticides, which act only on the prey, or only on the predators, or on both populations 
simultaneously. 

First we will study the situation in which the control acts only on the prey. For the 
remaining two cases we restrict ourselves to describing the final result. 

We will change to dimensionless variables given by the formulae 

.z, (T) = ~,a,-% (I). y, (T) = a,@,-'y (t), 6 = ~~a,-', z = a,t 

Using the dimensionless variables in (l.l), the equations of the controlled system have 
the form 

I' (t) = (i - y) z - UZ, II' (t) = b (5 - 1) y (1.2) 
2 (0) = "0, Y (0) = %, 20 > 0, % > 0, t > 0 (1.3) 

The control u f#) satisfies the natural constraints 
a < U < y. y = const> 0 (1.4) 

For u=o, system (1.2) has two equilibrium positions in the x, y plane: the points (o,o) and 
(1, i)= I?. Because only the point A is of any actual interest, the controllers' objective is 
to take system (1.2) from an arbitrary initial position (zO, I/J 
possible time. 

to the position R in the least 
Thus if T (zO, go, u) is the instant when system (1.2) first reaches the point R, 
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